Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The mass of the top quark is measured in 36.3$$\,\text {fb}^{-1}$$ of LHC proton–proton collision data collected with the CMS detector at$$\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} $$ . The measurement uses a sample of top quark pair candidate events containing one isolated electron or muon and at least four jets in the final state. For each event, the mass is reconstructed from a kinematic fit of the decay products to a top quark pair hypothesis. A profile likelihood method is applied using up to four observables per event to extract the top quark mass. The top quark mass is measured to be$$171.77\pm 0.37\,\text {Ge}\hspace{-.08em}\text {V} $$ . This approach significantly improves the precision over previous measurements.more » « less
- 
            Abstract A generic search is presented for the associated production of a Z boson or a photon with an additional unspecified massive particle X,$${\textrm{pp}}\rightarrow {\textrm{pp}} +{{\textrm{Z}}}/\upgamma +{{\textrm{X}}} $$ , in proton-tagged events from proton–proton collisions at$$\sqrt{s}=13\, \textrm{TeV}$$ , recorded in 2017 with the CMS detector and the CMS-TOTEM precision proton spectrometer. The missing mass spectrum is analysed in the 600–1600 GeV range and a fit is performed to search for possible deviations from the background expectation. No significant excess in data with respect to the background predictions has been observed. Model-independent upper limits on the visible production cross section of$${\textrm{pp}}\rightarrow {\textrm{pp}} +{{\textrm{Z}}}/\upgamma +{{\textrm{X}}} $$ are set.more » « less
- 
            Abstract A measurement of the jet mass distribution in hadronic decays of Lorentz-boosted top quarks is presented. The measurement is performed in the lepton + jets channel of top quark pair production ( $$\hbox {t}\overline{\hbox {t}}$$ t t ¯ ) events, where the lepton is an electron or muon. The products of the hadronic top quark decay are reconstructed using a single large-radius jet with transverse momentum greater than 400 $$\,\text {Ge}\hspace{-.08em}\text {V}$$ Ge V . The data were collected with the CMS detector at the LHC in proton-proton collisions and correspond to an integrated luminosity of 138 $$\,\text {fb}^{-1}$$ fb - 1 . The differential $$\hbox {t}\overline{\hbox {t}}$$ t t ¯ production cross section as a function of the jet mass is unfolded to the particle level and is used to extract the top quark mass. The jet mass scale is calibrated using the hadronic W boson decay within the large-radius jet. The uncertainties in the modelling of the final state radiation are reduced by studying angular correlations in the jet substructure. These developments lead to a significant increase in precision, and a top quark mass of $$173.06 \pm 0.84\,\text {Ge}\hspace{-.08em}\text {V} $$ 173.06 ± 0.84 Ge V .more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
